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Abstract-A direct approach is employed to obtain a general formulation of plate bending problems in
terms of a pair of singular integral equations involving displacement, normal slope, bending moment and
shear on the plate boundary. These equations are coupled with prescribed boundary conditions involving
these same variables furnishing a convenient basis for numerical solution. A simple discretization scheme is
described and two model problems treated to illustrate the nature and quality of some typical results.

INTRODUCTION
The formulation of elastic plate bending problems via boundary integral equations furnishes the
basis for an alternative to finite difference and finite element approaches to the numerical
solution of such problems. This was recognized by Massonnet[l] who suggested a formulation
suitable for clamped plates by analogy with the problem of determining an Airy stress function
for a particular plane elastostatic problem. Jaswon and Maiti [2] produced a boundary integral
treatment for uniformly loaded clamped or simply supported plates in terms of two source
distribution densities generating harmonic potentials which are then related to the plate
displacement. Other authors (e.g. [3,4]) have proposed methods suitable for particular, but
restricted, classes of plate bending problems admitting only special geometries or specific
classes of boundary conditions.

More recently Altiero and Sikarski[5] have suggested a more general treatment by imbed­
ding the problem in one for which the Green's function for a concentrated load and moment are
known. For example, by considering a clamped circular plate large enough to contain the
original plate region, an unspecified line load of concentrated force and moment may be placed
along the boundary of the original plate region, and the solution throughout the plate represen­
ted in terms of a "boundary integral" involving these unknown densities and the well known
Green's functions for a clamped circular plate. Prescribed boundary conditions on the original
plate boundary may then be used to generate a pair of coupled integral equations for the force
and moment densities, The authors, however, acknowledge serious practical difficulties with
other than clamped boundary conditions and hence treat only this case in their paper.

In the present work, a more direct approach is employed to obtain a general formulation in
terms of a pair of integral equations involving displacement, normal slope, bending moment,
and equivalent shear on the boundary, which are coupled with prescribed boundary conditions
involving these same variables.* A simple discretization scheme is then described and two
model problems treated.

PRELIMINARIES

Some of the notation we shall use is indicated in Fig. 1, which shows a portion of the plate.
Specifically, the plate is modelled by a bounded plane region n with total boundary an that is
piecewise twice continuously differentiable, i.e. the curvature is bounded and continuous except

tThe major portion of this work was completed while the author was on leave at the California Institute of Technology,
September 1977 to January 1978.

*After this manuscript was prepared the author was made aware of work along these same lines by G. Bezine
Universite de Poitiers. Also, the work of Forbes and Robinson, Numerical analysis of elastic plates and shallow shells b~
an integral equation method, University of Illinois Structural Research Series Report 34S (1969) is based on a similar
approach.
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w

Fig. 1. Relevant notation.

possibly at the (finite number of) corner points Ak, k = 1, ... , K; and finally we require that each
corner point have a non-zero interior angle. We suppose the plate to be loaded by a transverse
load intensity q defined on n, and note that for a uniform linearly elastic plate the deflection w
is governed by the differential equation

(1)

with suitable boundary conditions, left unspecified at present, imposed on an. The plate
stiffness is denoted D = Eh 3/12(1- /12) where E is the elastic modulus, h is the plate thickness
and /I is Poisson's ratio, and V4 is the iterated Laplacian operator.

Now let u be the deflection associated with some other particular loading on n and suitable
boundary conditions on an, and consider the symmetric bilinear form

(2)

where the derivatives are referred to any convenient cartesian coordinate system in the plane.
We not that CU(w, w) is precisely twice the strain energy of the plate subjected to the
displacement field w = w(x, y).

If eqn (2) is formally integrated by parts twice in u, and the resulting tangential derivative on
the boundary integrated between corners, we obtain the formula

CU(W,U)=Dl uV4wda+ r {'Vn(W)U-Jln(W)ddU}dS+ f [[Jl,(w»)uhk (3)
o Jao n k=\

where, at a regular point of the boundary

Aln(w) = D{ - V2w+(1- /I) [~:~ sin2 a +~:~ cos2 a -2 ::~ sin a cos a]}

= D/2{ -(1 + /I)V2w + (1- /I) [(~:~ - ~:~) cos 2a - 2 ::~ sin 2a ]}

Al,(w) = - D(1- /I){ (~:~ - ~:~) sin a cos a +::~ (cos2 a - sin2 a)}

D(1- /I) {(a2
w a2

w) . a2
w }

= - 2 ay2 - ax2 sm 2a +2 axay cos 2a

d d
'Vn(w) = - D dn V2w+ds Al, (w)

(4)

with a the angle from the x-axis to the outer normal and d/dn, d/ds denoting the normal and
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tangential derivatives on an. Finally, H denotes the discontinuity jump in the direction of
increasing arc length and the summation extends over all the corner points of an. Upon
invoking the symmetry of 0Zl(', .) we obtain the formal integral identity

in{'Yn(u)w - Atn(u) ~; +~~ Atn(w) - u'Yn (W)} ds = D In (uV
4
w - wV

4
u) da

+~1 [[AlI(w)Du -[AlI(u)DwL· (5)

The boundary operators Atn(-), Atl (-), 'Yn(-) produce, respectively, the bending moment,
twisting moment and equivalent shear. Upon extending these operators to regular arcs in the
interior of the plate, the usual definition of stress and couple results on coordinate lines as
indicated in Fig. 2 is then consistent with constitutive equations of the form

where

{
a2w a2w}M:u = Atn(W)la=O,1T = - D ax2+vayr

{a2w a2w}
Myy =Atn(w)la=:t1T/2=-D ayr+v ax2

a2w
Mxy = AtI(w)la=O,1T = -AtI(w)la=:t1T/2 = - D(l-v) axay

a
Qx=Qn(w)la=o=-Qn(w)la=1T=-D ax V2w

a
Qy = Qn(W)la~1T/2 = - Qn(W)la=-1T/2 = - D ay V2w

d d
Qn(w) = - D dn V2w = 'Yn(w)- ds All (w).

(6)

(7)

It will prove convenient for later calculations to refer the definitions in eqn (4) to a polar
coordinate system. Thus, if we denote by f3 the angle from the radial direction to the outer
normal, upon regarding w as a function of the polar coordinates (r, 6) and noting that f3 = a - 6,
we find

Since "u1(W) depends on f3 (or a), as well as rand 6 (or x and y), the tangential derivative
contains additional chain rule terms. We denote by l/R the curvature at a regular boundary

/x

Fig. 2, Cartesian stress and couple resultants.
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point (adopting the sign convention that a negative curvature indicates the center of curvature
is on the outward normal); then clearly

da
-==-
ds R'

Consequently, considering .Alt (w) alternatively as a function of (x, y, a) or of (r, 6, f3) we find

(9)

Now suppose that the boundary value problem posed by eqn (I), with suitable boundary
conditions appended, has a reasonably well behaved solution. In particular, we require that the
deflection and derivatives up to third order be continuous and boundedt on f!. Let P be an
interior point of f! and suppose d > 0 is its distance from af!. Place the origin of polar
coordinates at P and delete from f! a circular region of radius p < d. Then in the resulting
region f!p we introduce the following displacement field (corresponding to a concentrated force
at P) which we note is continuously differentiable as often as desired on f!p:

I
u = W(r)=--r 2 Inr

87TD

and with the aid of eqns (8) and (9), on af!p we find

dW I
N(r, 6, f3) =dn = 87TD (I +21n r) r cos f3

I+v I-v
M(r, 6, f3) =.Aln (W) = - 47T (I +In r) - g:;;:- cos 2f3

I-v
T(r, 6, f3) =.Alt (W) = g:;;:- sin 2f3

cos f3 I - v
V(r, 6, f3) = 'Vn (W) =- 47Tr [2 +(I- v) cos 2f3] + 47TR cos 2f3

and

(10)

(II)

Clearly, eqn (5) holds on f!p for every 0< p < d where now af!p contains, in addition to af!, the
circular boundary surrounding P. The contribution from this part of the boundary, for
vanishingly small p, is just the deflection w evaluated at P, consequently we deduce the
"Green's formula"

tThis condition could be violated in problems of interest, for example, under some circumstances in the neighborhood of
corners of the plate boundary the moment and shear could become unbounded. Atechnique for calculating and removing such
singularities will be sketched later.
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Furthermore, only the functions V, M, N, W and T on the right-hand side of eqn (12)
depend on the location of P and these are given explicitly (in terms of r, 8, (3) by eqns (10) and
(11). We note that directional derivatives at P in the direction making an angle l/J with the x-axis
(i.e. (J = 0) may be computed by formal chain rule differentiation upon noting

dr
-=cos«(J-l/J),
ds",

(13)

Formulas for the derivatives of w to any order in the interior follow by repeated differen­
tiation of eqn (12) provided the integral involving DV4w(=q) continues to converge, and this
will certainly be the case through at least third derivatives. Thus, eqn (12) "solves" the problem
in terms of the boundary values of the deflection w, the normal derivative dw/dn, the bending
moment "«n (w), and the equivalent shear 'Yn(w), along with the corner jumps in the twisting
moment ["«1 (W)]Ak' k = 1, ... , K. In the next section we derive a pair of coupled integral
equations which, together with prescribed boundary conditions, determine these boundary
functions.

PLATE BOUNDARY INTEGRAL EQUATIONS

We now place the origin point P on the boundary an, and for generality suppose that P is a
corner point with internal angle K1f; should P be a regular point of an (at which the tangent
turns continuously and the boundary data is smooth) we merely set K = 1 and note the
continuity of relevant quantities. Again, we suppose that the posed boundary value problem has
a solution with continuous bounded derivatives up to third order in n. The kernel functions we
will introduce will be continuous everywhere except possibly at P, hence we again form the
region n p by deleting from n those points within a distance p from P. For p small enough the
boundary anp is changed from an by the introduction of a new arc Cp and two new corner
points ,\ + and ,\ -, while deleting the arcs denoted C/ and Cp- and (possibly) the corner at P.
This is illustrated in Fig. 3. The remaining boundary that nand n p have in common is denoted
C:. A local polar coordinate system is also installed at P as shown.

The identity (5) applied to the region n p for biharmonic U and vanishingly small p, on
assuming the indicated limits exits, takes the form

Ju+ r {'Yn(U)W-"«n(U)dd
w

+dd
U

"«n(W)-U'Yn(W)}ds+ ±*[w[..«,(u)]-u[..«,(w)]h
kJeo n n k=\

+[W["«I(U)]- U["«1 (w)]]p = In qu da (14)

where

(15)

p

Fig. 3. Region and boundary changes from n to np•
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is evaluated in a neighborhood of the boundary point P, and we have introduced the notation

r (.)ds =Iim rOdsJe- p-->O Jq
(16)

for the Cauchy Principal Value of the boundary integral. Also, if P is indeed a corner point its
K

contribution is to be deleted in forming the sum I *(. hp and finally
k~1

For future reference in evaluating these limits we make the following observations:
At any interior point Q of Cp,

I I{3 = 1T, - =--
R P

wlQ - wlp = - p ~~ IQ + 0(p2).

Also,

(17)

(18)

(19)

where I/R\ I/R- are the limiting values of the curvature on either side of P. Furthermore, on
Cp+ and Cp - we have

so that on these arcs

_(1T r) 2){3=+ I-2R± +O(r (20)

(21)sin 2{3 = +: ;± +0(r2
).

Now in eqn (14) consider the special choice for u defined by eqns (10) and (II). It
immediately follows from the assumed smoothness of wand the observation (18) that the
limiting value of eqn (I5) is just

(22)

and we recall that if P is a regular point of an, then K = l. The convergence of the ingral over
C* is easily shown; indeed, for p fixed and 0 < E < r < p we have, on Cp+ and Cp-,

N =0(r2 1n r) =oCr)

W = 0(r2 1n r) = oCr). (23)
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Consequently, the contribution to the limiting value of the boundary integral from the arcs C/
and Cp- may be estimated by

. fP { 3- v [ 1 1 ] 1+v [ 1+3v] [awI awI] }~l~. - 81T R- wlcp-+ R+ wlc/ + 81T 2Inr+~ an c- +an c+ +O'(r) dr
p p

(1-v)p l+v 1+3v)dW\
=- 21TRp wlp+ 41T p(2Inp+1+v dn p+o(p) (24)

where

dw \ -! (dWI +dwI )
dn p - 2 dn p- dn p+ •

(25)

Finally, it is easy to see that

lim [TJA + =lim (TlA - =lim W(r, 8) =O.
p-.(J p-.(J r-.(J

Hence, the contribution from the corner terms at A+ and A- vanishes, and we may write eqn
(14) as

1/2Kwlp +L.{Vw - M ::+NAln(w)- W'Vn(W)} ds

+~l* {w[TJ- W[Alt(w)Jhk = In qW da. (26)

We next obtain a representation formula for the derivatives of w at P. To this end we
introduce a local E1J-coordinate system rotated an angle", +'Y from the 8 = 0 direction and
introduce the new polar angle cP = 8 - ('" +'Y) as illustrated in Fig. 4. Then an appropriate
biharhomic fundamental solution is

1
u = Wy(r, cP) = 21TD rIn r cos q,

and from eqns (8) and (9) we compute

dW 1
Ny(r, cP, 13) =~ =21TD {cos q, cos 13 + In r cos (cP + f3)}

P

Fig. 4. Notation for origin at a plate comer.

(27)
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1
Vy(r, </J, (3) = 'Vn (Wy) = p{cos ({3 - </J)[2 +(1- v) cos 2{3]

1T'r

+ 2(1- v) sin </J cos {3 sin 2{3} - 1-R
v

sin </J sin 2{3
1T' r

1- I' sin </J
Ty(r, </J, (3) =Jl,(Wy) =-2---cOS 2{3.

7T r
(28)

In this case, using the observations (18) we not that on Cp

v - 3- v cos </J
l' -- 21T' 7

M = _ 1+ v cos </J
l' 21T' P

1
Ny = - 21T'D (1 +In p) cos </J

1
Wy = 21T'D P In p cos </J (29)

and in general JWl' does not converge. We may remedy the situation, however, by noting that if
we replace w in eqn (14) with w== w- wjp, all derivatives remain unaltered, and with the aid of
the estimates (1Sh and (19) we compute

jWl' = ~i~ Ie {Vy(w - wIp )- My ~: +NyJln (w) - Wy'Vn(w)} ds
P

f
K1T

-

y

2 raw I aw I ]= - -1' -; cos </J a~ pcos </J + aT/ psin </J d</J

= - {K +2~ [sin 2'Y + sin 2(K1T' - 'Y)]} ~; Ip

1 dwl--[cos 2'Y -cos 2(K1T'- 'Y)]- .
21T' dT/ p

(30)

To establish the convergence of the integral over C* we again estimate the contribution
from C/ and Cp-. Introducing the notation

</J + = - 'Y, (31)

we have the following estimates on C/ and Cp-;

w=w- wlp = r [~;Ip cos </J± +~; Ip sin</J:t] + (J(r
2

)

dw = + {aw I sin </J:t - aw I cos </J:t} +(J(r)
dn a~ p aT/ p

Vy = + 21+ ~ sin </J:t +(J(r2
)

'TT'r

1+1'M = ---cos </J:t+(J(1)
l' 21T'r

N Inr.:t (1)
l' = ± 21T'D SIn </J +0

Wy = 0(1). (32)
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Then paralleling the computation of eqn (24) we see that for fixed p, the contribution to the
boundary integral from C/ and Cp- is estimated by

. fP {I +II ( . + [awI + awI . +]
~~. 21Tr2 - sm I/> r a~ p cos I/> +r a." p sm I/>

. [aw I ""- aw I . ""-])+sm I/> - r af p cos 'I' +r a." p sm 'I'

(33)

and consequently the integral over C· converges.
Finally, we note that

[cos 2~DA'" = =+= 2+O(P)

so that

(34)

Using eqn (32)\ to estimate WIA'" we compute a nonzero contribution from the comers at A+ and
A-:

{w[Ty)}p =1: II { - sin 1/>+[~;Ip cos 1/>+ +~;Ip sin 1/>+J

. ""- [aWl ""- awl . ""-J}+sm 'I' af P cos 'I' + a." p sm 'I'

(35)

Combining this result with eqn (30) we obtain eqn (14) finally in the form

where

I<f = - I< - {1T [sin 21 +sin 2(1<1T - 1)]

II
1<" =- 21T [cos 21 - cos 2(1<1T - 1)]. (37)

We note that if P is a regular point for which I< = 1, then I<f = -1, 1<" = O. Thus, if ~ is
oriented along the outer normal, the first two terms in eqn (36) collapse to - (dw/dn )Ip. If I< '" 1,
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for the particular choice 'Y :::: 'YI :::: (2 + 1<)11'/2 (i.e. the ~,-axis bisects the exterior angle) we find
I<{, :::: 1<1 = -I< - (v!11') sin 1<11',1<'1 =0, whereas for 'Y = 'Y2 = (I< -1)(11'/2)(the ~2-axis perpendicular to
the corner angle bisector) we find I<~ = 1<2 =- I< +(v! 11') sin 1<11', 1<'1 =O. These two choices in eqn
(36) yield directional derivatives in the ~l-and ~2-directions, consequently suitable linear
combinations will give independent representations for the normal derivative to either side of the
corner point P. Indeed, with the notation implied in Fig. 5 we can write

a I I< +~ sin 1<11' {d I d I }
Kl a~ p = - 2s7n K11'/2 d: p+ +d: p-

a I K - ~ sin K11' {d I d I }
K2 a~ p = - 2c:s 1<11'/2 d: p+ - d: p- .

(38)

We will return to this observation in the next section.
Equations (26) and (36), together with prescribed boundary data, should be sufficient to

determine the remaining boundary data needed in eqn (12) to characterize the solution of the
original problem. Efficient and accurate methods of discretizing and approximating the solution
of these equations as well as a strategy for treating uniformly any of a wide class of different
plate geometries, loadings, and boundary conditions, is currently under study. In the next
section we outline a relatively unsophisticated approach and illustrate it with two simple
examples.

NUMERICAL TREATMENT
The boundary is partitioned with a finite number of nodal points, care being taken to place a

nodal point at each corner. The deflection w. normal slope dw/dn, bending moment .iln (w), and
equivalent shear 'Vn (w) are to be defined on the boundary in terms of their nodal values.!t
should be noted that at corner nodes there are two distinct limiting values of dw/dn, .iln (w) and
'Vn (w), as well as the twisting moment jump [.ill (w)D (the deflection is, of course, continuous
and unaffected by the discontinuity in outer normal direction).

At each interior node we will need to determine the four variables, and four independent
relations may be associated with each such node. These are two independent boundary conditions,
and discretized versions of eqns (26) and (36) generated in the following manner. Over everv
segment of boundary between nodes the variables are interpolated linearly and a convenient
quadrature formula is used (in the following examples, a fifth order Gaussian rule). Evaluated in the
quadratures are the coefficients of each nodal variable, and these are accumulated in a "stiffness
matrix" along with terms outside the boundary integral.

It should be noted from eqns (24) and (33) so long as we use a quadrature formula which
does not require a function evaluation at the origin node itself, no special treatment is required
for the boundary segments adjacent to the singular point. Furthermore, because the variables in
this formulation do not involve the boundary geometry explicitly, there is no need to ap­
proximate the shape of the boundary in discretizing the equations. This could be an important
advantage of this particular formulation in problems involving curved boundaries.

.;,

Fig. 5. Notation for directional derivatives and normal slopes at a corner.
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At each corner node we require eight independent relations. One of these is obtained from
eqn (26) and two others from eqn (36) and following remarks. The five additional relations
needed at each corner node are furnished by boundary conditions, and if necessary, an
examination of the asymptotic nature of the solution in a neighborhood of the corner. For
example, at a corner of a rectangular plate, if both edges are free of support, then the right and
left values of the bending moment and equivalent shear as well as the twisting moment jump
must vanish. On the other hand, if both edges are simply supported, then boundary conditions
dictate that the right and left values of bending moment as well as the deflection must vanish.
The two additional conditions needed follow from an analysis of the asymptotic behavior of the
solution in the neighborhood of a simply supported rectangular corner (as, for example in [6])
which dictates that the right and left values of the equivalent shear must vanish. The corner
jump in the twisting moment, which is one of the remaining independent variables, may be
interpreted as the concentrated reactive force at the corner required by classical plate theory.
Finally, in the case where both edges at a rectangular corner are clamped, the right and left
bending moment must vanish along with the right and left normal slope and the deflection.

It might be appropriate to remark here that an analysis of the asymptotic behavior of
solutions with homogeneous boundary conditions at a corner point in the manner of [6] should
also reveal all possible solutions which are consistent with bounded strain energy, but lead to
cases where the smoothness assumptions laid down in the preceding section are violated. The
significant variables associated with the corner node in such cases are the independent
parameters of these singular eigensolutions. Adapting the procedure outlined in [7] (for
evaluating stress intensity factors in plane problems) to the present case, the appropriate kernel
functions for the boundary integral with origin at a singular corner are obtained from
"complementary" eigensolutions, so that evaluation of the integral on the vanishingly small arc
around the corner point leads to a linear combination of the desired parameters. Results
obtained by incorporating this idea in the current scheme will be presented in a subsequent
paper.

Finally, we can relax somewhat the requirement that the solution be smooth (through third
derivatives) and allow concentrated force and moment loads in the plate interior. An analysis

014 r--------r------.--------..,.------~

.012

c: .010
"0..... •~
"0
I

W
Il. 008g
<f)

..J • 3 NODES (16 TOTAL)
<[

~ .006 + S NODES (32 TOTAL)

z X 9 NODES (64 TOTAL)

- T a W-K [8]

.004

.002

0!0------.-=12L:'S------.2L.S------.31.7S------..J...S...J

NODAL POINT LOCATION x/L

Fig. 6. Normal slope on half an edge of a uniformly-loaded simply-supported square plate.
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~
~
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•
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Fig. 7. Equivalent shear on half an edge of a uniformly-loaded simply-supported square plate.

similar to that leading to eqn (12) shows that all the integrals still converge, and the only
modification required in eqns (26) and (36) is the addition of terms on the right-hand sides
corresponding to the work done by the concentrated loads in the (known) auxiliary deflections
Wand W'Y'

For the present paper, numerical results were obtained for two model problems consisting
of a square plate (side length L) subjected to a uniform load q and either hinged on all edges or
clamped there. Numerical results were obtained for three meshes: 16, 32 or 64 equally spaced
nodes on the entire boundary. Because of symmetry results are presented on only half of one
edge involving 3, 5 or 9 nodes.

For the hinged plate, boundary conditions dictate that the displacement and bending
moment vanish on the edges. Consequently, the nodal point variables of interest are the normal
slope and equivalent shear as well as the corner reaction (corner jump in twisting moment). As
is apparent in Figs. 6 and 7, convergence to the series solution given in [8] appears to be smooth

06 r------,-------,--------r------,.....,I

•

-

5375

3 NODES ( /6 TOTAL)

5 NODES ( 32 TOTAL)
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,/./ )( I

Ollfr::=~--__.L_ ..L.... ..L.... .L.J

o J~ .~
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i- .04

?
I! .03

Fig. 8. Bendina moment on half an edge of a uniformly-loaded clamped square plate.
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I

• 3 NODES (16 TOTAL)

+ 5 NODES (32 TOTAL)

X 9 NODES (64 TOTAL)

-- MOODY (10 J

03

04

-01

-;. 02
.....
'i;c::
I 0.1

~
:I:
If)

...-/-Y". /
/

/'
/

./
/

/
Y

/
/tz 00 .-/'

~ I--'""" X
~
5
13

-0.2

o
I

0125 0.25
NODAL POINT LOCATION x/L

0.375 05

Fig. 9. Equivalent shear on half an edge of a uniformly-loaded clamped square plate.

and quite rapid. Furthermore, the independent calculation of the comer reaction is within
1.4% of the correct value for even the 16 nodal point mesh.

Bending moment and equivalent shear results for the clamped plate are shown in Figs. 8 and
9. The maximum values of the bending moment and shear at the midside node (xlL = 0.5) are
with 1% of the values given by Wojtaszak[9] using 32 or 64 nodes. The comparison curves
shown in Figs. 8 and 9 are interpolated from data given by Moody[lO] for a uniformly loaded
square plate clamped on three sides and hinged on the fourth. While the boundary conditions
are different, the shear and moment on the edge opposite the hinge should be reasonably close
to the case of all edges clamped and, indeed, the maximum values are within a few per cent of
those quoted above.

16 nodes 32 nodes 64 nodes exact

Hinged Plate
Clamped Plate

0.0641
0.0260

0.0651
0.0128

0.0648
0.0037

0.0650
o
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